

600 QUESTÕES RESOLVIDAS DE MATEMÁTICA

EEAR

APRESENTAÇÃO

Olá, amigos Futuros Militares, tudo bem?

Nosso aula de hoje será sobre Sistemas Lineares. Preste bastante atenção na diferença entre Sistema possível determinado, possível indeterminado e impossível.

"Não sabendo que era impossível, foi lá e fez"

Jean Cocteau

SISTEMAS LINEARES - QUESTÕES

- 1) Uma agência de turismo vendeu um total de 78 passagens para os destinos: Lisboa, Paris e Roma. Sabe-se que o número de passagens vendidas para Paris foi o dobro do número de passagens vendidas para os outros dois destinos conjuntamente. Sabe-se também que, para Roma, foram vendidas duas passagens a mais que a metade das vendidas para Lisboa. Qual foi o total de passagens vendidas, conjuntamente, para Paris e Roma?
- a) 26
- b) 38
- c) 42
- d) 62
- e) 68
- 2) (Espcex 2020) A condição para que o sistema $\begin{cases} ax+y+z=0\\ x+2y+z=0, \ a\in \mathbb{R}, \ \text{tenha}\\ x+y+z=0 \end{cases}$ solução única é
- a) $a \neq 1$.
- b) $a \neq -1$.
- c) $a \neq 2$.
- d) $a \neq -2$.
- e) $a \neq 0$.
- 3) Para que o sistema de equações lineares $\begin{cases} x+y=7\\ ax+2y=9 \end{cases}$ seja possível e determinado, é necessário e suficiente que
- a) $a \in \mathbb{R}$.
- b) a = 2

- c) a = 1.
- d) $a \neq 1$.
- e) $a \neq 2$.
- 4) Em relação ao sistema linear $\begin{cases} x-2y+z=1\\ 2x+y-z=2\\ x+3y-2z=1 \end{cases}$, pode-se afirmar que:
- a) Ele é possível e determinado e sua solução é (2, 3, 5).
- b) Ele é possível e determinado e sua solução é (0, -3, -5).
- c) Ele é impossível.
- d) Ele é possível e indeterminado e sua solução é (k + 1, 3k, 5k), com k real.
- e) Ele é possível e indeterminado e sua solução é (k, 2k, 1+3k), com k real.
- 5) Uma instituição de caridade arrecadou, durante uma campanha de recebimento de donativos tecnológicos, cerca de 183 equipamentos, entre televisores, computadores e dispositivos eletrônicos portáteis (tablets ou celulares). Sabe-se que o número de computadores é uma unidade a mais que o triplo do número de televisores, enquanto que o número de dispositivos eletrônicos portáteis é a metade do número de computadores. Determine o número de televisores doados.
- a) 33
- b) 50
- c) 83
- d) 60
- e) 57
- 6) Uma coleção de doze livros foi distribuída entre Augusto e Bárbara. Se Augusto tivesse recebido três livros a mais do que recebeu dessa coleção, então a quantidade de livros recebida por ele seria igual ao dobro da quantidade de livros recebida por Bárbara. O número de livros que Bárbara

recebeu é igual a a) 8.

- a) o.
- b) 7.
- c) 5.
- d) 4.
- 7) Sabendo que k é um número real, considere o sistema linear nas variáveis reais x e y,

$$\begin{cases} x + ky = 1, \\ x + y = k. \end{cases}$$

É correto afirmar que esse sistema

- a) tem solução para todo k.
- b) não tem solução única para nenhum k.
- c) não tem solução se k=1.
- d) tem infinitas soluções se $k \neq 1$.
- 8) A soma de dois números naturais é 13 e a diferença entre eles é 3. Qual o produto entre esses números?
- a) 30.
- b) 36.
- c) 39.
- d) 40.
- e) 42.
- 9) Sobre o sistema de equações lineares $\begin{cases} 3x + 5y = 7 \\ 3x + \beta y = 7 \end{cases}$ é CORRETO afirmar que
- a) possui uma única solução, qualquer que seja β .
- b) possui infinitas soluções, qualquer que seja β .

c) possui ao menos uma solução, qualquer que seja β.
d) só tem solução se β = 5.
e) é impossível se β ≠ -5.
10) Em um estacionamento, há triciclos e quadriciclos, totalizando 17 veículos e 61 rodas. Quantos triciclos há nesse estacionamento?
a) 10
b) 8
c) 7
d) 17
e) 12
11) Considere o sistema linear nas variáveis reais x, y, z e w,

$$\begin{cases} x - y = 1, \\ y + z = 2, \\ w - z = 3 \end{cases}$$

Logo, a soma x + y + z + w é igual a

- a) -2.
- b) 0.
- c) 6.
- d) 8.
- 12) A função polinomial f, definida por f(x) = ax + b, que possui f(-2) = -3 e f(2) = 1, intercepta o eixo das ordenadas em:
- a) -3.
- b) -2.
- c) -1.
- d) 0.

- e) 1.
- 13) (Espcex 2011) Para que o sistema linear $\begin{cases} 2x + y = 5 \\ ax + 2y = b \end{cases}$ seja possível e indeterminado, o valor de a + b é:
- a) –1
- b) 4
- c) 9
- d) 14
- e) 19
- 14)(EEAR 2021) O sistema

$$\begin{cases} x - 2y + z = 2 \\ 2x + 3y + z = 5 \\ 3x - 6y + 3z = 9 \end{cases}$$

quanto a sua solução, é classificado como

- a)Impossível
- b)Indeterminado
- c)Possível e determinado
- d)Possível e indeterminado

SOLUÇÃO

Resposta da questão 1:

[D]

Sejam ℓ , p e r, respectivamente, o número de passagens vendidas para Lisboa, Paris e Roma. Logo, tem-se que

$$\begin{cases} p = 2(\ell + r) \\ r = \frac{\ell}{2} + 2 \end{cases} \sim \begin{cases} p = 2(78 - p) \\ 2r - \ell = 4 \\ \ell + r = 78 - p \end{cases}$$
$$\sim \begin{cases} p = 52 \\ 2r - \ell = 4 \\ \ell + r = 26 \end{cases}$$
$$\sim \begin{cases} p = 52 \\ 2r - \ell = 4 \\ \ell + r = 26 \end{cases}$$
$$\sim \begin{cases} p = 52 \\ \ell = 10 \\ \ell = 16 \end{cases}$$

A resposta é p + r = 52 + 10 = 62.

Resposta da questão 2:

[A]

O sistema é possível e determinado se, e somente se,

$$\begin{vmatrix} a & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} \neq 0 \Leftrightarrow 2a+1+1-2-a-1 \neq 0$$

$$\Leftrightarrow a \neq 1.$$

Resposta da questão 3:

[E]

Para que o sistema seja possível e determinado é necessário e suficiente que

$$\frac{a}{1} \neq \frac{2}{1} \Leftrightarrow a \neq 2.$$

Resposta da questão 4:

[D]

Tomando a matriz ampliada e escalonando, temos

$$\begin{pmatrix} 1 & -2 & 1 & 1 \\ 2 & 1 & -1 & 2 \\ 1 & 3 & -2 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 1 & 1 \\ 0 & 5 & -3 & 0 \\ 0 & 5 & -3 & 0 \end{pmatrix}$$
$$L'_{2} \leftrightarrow (-2) \cdot L_{1} + L_{2}$$
$$L'_{3} \leftrightarrow (-1) \cdot L_{1} + L_{3}$$

Logo, o sistema equivalente escalonado é

$$\begin{cases} x - 2y + z = 1 \\ 5y - 3z = 0 \end{cases} \sim \begin{cases} x = 1 + \frac{z}{5} \\ y = \frac{3z}{5} \end{cases}.$$

Portanto, tomando z = 5k, com $k \in \mathbb{R}$, podemos afirmar que o sistema é possível e indeterminado e sua solução é (1 + k, 3k, 5k).

Resposta da questão 5:

[A]

Sendo p o número de eletrônicos portáteis, c o número de computadores e t o número de televisores, pode-se calcular:

$$\begin{cases} c = 3t + 1 \\ p = \frac{c}{2} \Rightarrow p = \frac{c}{2} = \frac{3t + 1}{2} \\ p + c + t = 183 \end{cases}$$

Assim:

$$\frac{3t+1}{2} + 3t + 1 + t = 183 \Rightarrow \frac{3t+1+6t+2+2t}{2} = 183 \Rightarrow 11t = 363 \Rightarrow t = 33$$

Resposta da questão 6:

[C]

Sendo a a quantidade de livros recebida por Augusto e b a quantidade de livros recebida por Bárbara, pode-se calcular:

$$a + b = 12 \Rightarrow a = 12 - b$$

 $a + 3 = 2b \Rightarrow 12 - b + 3 = 2b \Rightarrow 3b = 15 \Rightarrow b = 5$

Resposta da questão 7:

[A]

O sistema possui solução única se, e somente se,

$$\frac{1}{1} \neq \frac{k}{1} \Leftrightarrow k \neq 1.$$

Por outro lado, se k=1 as equações do sistema serão idênticas e, portanto, o sistema terá mais de uma solução.

Em consequência, o sistema tem solução para todo k.

Resposta da questão 8:

[D]

Considere o sistema:

$$\begin{cases} x + y = 13 \\ x - y = 3 \end{cases} \Rightarrow (3 + y) + y = 13 \Rightarrow y = 5$$

$$x - y = 3 \Rightarrow x - 5 = 3 \Rightarrow x = 8$$

Multiplicando:

$$5 \times 8 = 40$$

Resposta da questão 9:

[C]

O sistema possui uma única solução se, e somente se, $\frac{3}{3} \neq \frac{5}{\beta} \Leftrightarrow \beta \neq 5$. Ademais, o sistema possui infinitas soluções se, e somente se, $\beta = 5$.

Finalmente, como os termos independentes das duas equações são iguais, podemos concluir que o sistema possui ao menos uma solução, qualquer que seja o real β .

Resposta da questão 10:

[C]

Considere
$$\begin{cases} t \Rightarrow triciclo \\ q \Rightarrow quadriciclo \end{cases}$$
 logo $\begin{cases} t + q = 17 \\ 3t + 4q = 61 \end{cases} \Rightarrow \begin{cases} t = 7 \\ q = 10 \end{cases}$

Portanto, temos 7 triciclos.

Resposta da questão 11:

[D]

Somando todas as equações do sistema, vem x + w = 6. Logo, somando essa equação à segunda, obtemos x + y + z + w = 6 + 2 = 8.

Resposta da questão 12:

[C]

Se f(-2) = -3 e f(2) = 1, então podemos escrever o sistema:

$$\begin{cases}
-2a + b = -3 \\
+2a + b = 1
\end{cases}$$

$$2b = -2 \rightarrow b = -1$$

A função f(x) = ax + b irá interceptor o eixo das ordenadas quando x = 0, ou seja, quando $f(0) = 0a + b \rightarrow f(0) = b = -1$.

Resposta da questão 13:

[D]

Para que o sistema seja possível e indeterminado, deve-se ter

$$\frac{2}{a} = \frac{1}{2} = \frac{5}{b} \Leftrightarrow a = 4 \text{ e } b = 10.$$

Por consequinte, a + b = 4 + 10 = 14.

Resposta da questão 14:

[A]

Observando o sistema dado:

$$\left\{egin{array}{l} x-2y+z=2\ 2x+3y+z=5\ 3x-6y+3z=9 \end{array}
ight.$$

Perceba que se multiplicarmos a primeira equação por 3, obteremos:

3x - 6y + 3x = 2, entretanto, a terceira equação diz que 3x - 6y + 3x = 9

O que é impossivel!!